Quantum One-Time Memories from Stateless Hardware
نویسندگان
چکیده
A central tenet of theoretical cryptography is the study of the minimal assumptions required to implement a given cryptographic primitive. One such primitive is the one-time memory (OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time classical and quantum programs. It is known that secure OTMs do not exist in the standard model in both the classical and quantum settings. Here, we show how to use quantum information, together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically secure OTMs. This is in sharp contrast with the classical case, where stateless hardware tokens alone cannot yield OTMs. In addition, our scheme is technologically simple. We prove security in the quantum universal composability framework, employing semi-definite programming results of Molina, Vidick and Watrous [TQC 2013] and combinatorial techniques of Pastawski et al. [Proc. Natl. Acad. Sci. 2012].
منابع مشابه
Founding Cryptography on Tamper-Proof Hardware Tokens
A number of works have investigated using tamper-proof hardware tokens as tools to achieve a variety of cryptographic tasks. In particular, Goldreich and Ostrovsky considered the problem of software protection via oblivious RAM. Goldwasser, Kalai, and Rothblum introduced the concept of one-time programs: in a one-time program, an honest sender sends a set of simple hardware tokens to a (potenti...
متن کاملQuantum One-Time Programs - (Extended Abstract)
One-time programs are modelled after a black box that allows a single evaluation of a function, and then self-destructs. Because software can, in principle, be copied, general one-time programs exists only in the hardware token model: it has been shown that any function admits a one-time program as long as we assume access to physical devices called one-time memories. Quantum information, with ...
متن کاملBuilding one-time memories from isolated qubits
One-time memories (OTM’s) are a simple type of tamper-resistant cryptographic hardware, which can be used to implement many forms of secure computation, such as one-time programs. Here we investigate the possibility of building OTM’s using isolated qubits — qubits that can only be accessed using local operations and classical communication (LOCC). Isolated qubits can be implemented using curren...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملState Management for Hash-Based Signatures
The unavoidable transition to post-quantum cryptography requires mature quantum-safe digital signature schemes. Hash-based signatures are well-understood and promising candidates. A common concern regarding their deployment is their statefulness, due to their use of one-time signature schemes. While the theory of hash-based signatures is mature, a complete understanding of the system security i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015